
Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 1 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Part 4 - Contents

1. ccTalk FAQ - Frequently Asked Questions..3

1.1 General Questions ..3
1.1.1. Where does the name ‘ccTalk’ come from ? ..3
1.1.2. Which is correct - ‘cctalk’ or ‘ccTalk’ ?...3
1.1.3. Does the name ccTalk refer to hardware, software or a written specification ?3
1.1.4. What is ccTalk and who uses it ?..3
1.1.5. Where do I get information on ccTalk ? ...3
1.1.6. Who is the controlling authority for ccTalk ?...3
1.1.7. Do I have to pay any fees to use it ? ...4
1.1.8. What software support can you provide ? ..4
1.1.9. Is ccTalk the same as RS232 ? ...4
1.1.10. How many wires are needed on ccTalk ? ...4
1.1.11. What peripherals are covered by ccTalk ?..4
1.1.12. Why are the ccTalk command headers not in a sensible order ? ..4
1.1.13. I’ve heard about ccTalk encryption. What is it and when is it used ?...................................4
1.1.14. Has anybody written a ccTalk protocol analyser ? ...5
1.1.15. Can ccTalk run at anything other than 9600 baud ? ...5
1.1.16. How many peripherals can be supported on a ccTalk bus ? ...5
1.1.17. What is the expected ccTalk data line voltage ? ...5
1.1.18. How ‘noise-immune’ is ccTalk ?..6
1.1.19. Can I run ccTalk over USB ?..6
1.1.20. Is there a ccTalk test house or approval facility ?...6
1.1.21. When was ccTalk ‘invented’ ? ...6
1.1.22. What kind of timing problems can I get with ccTalk ?...6
1.1.23. My ccTalk software doesn’t work. What should I do ?..7
1.1.24. Is there a web site for ccTalk ? ...7
1.1.25. Is there a user group for ccTalk ? ...7
1.1.26. How does ccTalk perform error correction and retries ? ..8
1.1.27. Why are there so many approved ccTalk connector types ?...8
1.1.28. How do I go about obtaining ccTalk encryption documents?...8
1.1.29. Other serial protocols seem more sophisticated. Why is this ?...8
1.1.30. My 8-bit checksum is wrong. Why ?..9
1.1.31. My CRC checksum is wrong. Why ? ...9
1.1.32. What is the longest ccTalk message size ? ...10
1.1.33. How do I know when a new ccTalk message begins ?...10
1.1.34. I don’t understand MDCES commands. Can you explain ? ...11
1.1.35. How do I know which version of ccTalk to use ?...11
1.1.36. Do I send decimal, hexadecimal or ASCII values in ccTalk ? ...12

1.2 Host Machine Manufacturer Questions ..12
1.2.1. How do I connect a PC to a ccTalk peripheral ?...12
1.2.2. Is there a standard ccTalk ‘driver’ I can use ? ..12
1.2.3. Is it possible to have 2 ccTalk masters on the same bus ? ..13
1.2.4. Why is the original PNP ccTalk interface circuit now obsolete?..13
1.2.5. If I use the broadcast address, all the responses clash. So why use it ?13
1.2.6. Can I run a ccTalk serial cable between machines ? ..13
1.2.7. I use Linux. Is that a problem ? ..13
1.2.8. My company does not have electronic engineering resource. How do I use ccTalk ?14
1.2.9. My company does not have software engineering resource. How do I use ccTalk ?14
1.2.10. How do I know what coins and bills are available to me in a peripheral ?.........................14
1.2.11. I have local echo. Is that correct ? ..14

1.3 Peripheral Manufacturer Questions ..15
1.3.1. What is the minimum hardware I need to run ccTalk ? ..15
1.3.2. How do I create a ccTalk product ? ..15
1.3.3. I need some extra ccTalk commands. How do I do it ? ..15
1.3.4. I want to add some ‘secret’ ccTalk commands. How do I do it? ..15
1.3.5. What power can I source over a ccTalk serial bus ?...16
1.3.6. Does ccTalk support remote download of coins and bills ? ...16
1.3.7. Can I implement ccTalk on a Microchip PIC microcontroller?..16
1.3.8. Is there a ccTalk logo I can use on my products ? ..16

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 2 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1.3.9. I haven’t got time to respond on ccTalk. How do I solve this problem ?17
1.3.10. How do I register our company name ?..17
1.3.11. How do I report multiple fault codes ? ...18
1.3.12. How does polling work with a fast coin acceptor in gaming? ..18

2. ccTalk PDR - Peripheral Design Rules ...19
2.1 Coin Acceptors ...19

2.1.1. Rule 1 - Command Set..19
2.1.2. Rule 2 - Credit Poll Timeout ..19

2.2 Bill Validators ..19
2.2.1. Rule 1 - Command Set..19
2.2.2. Rule 2 - Credit Poll Timeout ..19
2.2.3. Rule 3 - Escrow Operation ...20

2.3 Payouts ...20
2.3.1. Rule 1 - Command Set..20
2.3.2. Rule 2 - Event Counter ...20

3. ccTalk ‘Combo Devices’ White Paper ...21
3.1 Solution 1 : Manage As Single Device...22
3.2 Solution 2 : Manage as Multiple Devices on Single Address...23
3.3 Solution 3 : Manage as Multiple Devices on Multiple Addresses..24
3.4 Summary ..24
3.5 Conclusion..25

4. ccTalk RFC (Request For Change)...26
4.1 Addition of lower-case letters to coin & note mint issue..26
4.2 Addition of decimal point into the bill value field..27
4.3 Poll Watchdog Event and Baud Rate Switching...29
4.4 Baud Rate Switching ..31
4.5 Product Spoofing ..32

5. ccTalk over USB ..35
5.1 Introduction ..35
5.2 Advantages ...36
5.3 Disadvantages...36
5.4 Hardware Solutions ..36
5.5 Example Devices ..36
5.6 System Integration..36
5.7 Broadcast Address and MDCES commands ..37

6. Security Vulnerabilities ..38
6.1 The Null Byte Injection Problem..38

7. Obsolete Commands...39
7.1 Header 235 - Read last credit or error code ..39
7.2 Header 234 - Issue guard code..39
7.3 Header 224 - Dispense coins ..40
7.4 Header 223 - Dispense change ...40
7.5 Header 220 - One-shot credit..41
7.6 Header 206 - Empty payout..41
7.7 Header 205 - Request audit information block...42
7.8 Header 200 - Upload coin data ...42
7.9 Header 190 - Request payout status..43

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 3 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1. ccTalk FAQ - Frequently Asked Questions

1.1 General Questions

1.1.1. Where does the name ‘ccTalk’ come from ?

The protocol was developed at Coin Controls before the company changed its name.
Hence coin-controls-Talk . We are now Crane Payment Solutions - Money Controls.

1.1.2. Which is correct - ‘cctalk’ or ‘ccTalk’ ?

The marketing brand name ‘ccTalk’ has now replaced the original engineering name
‘cctalk’ in most of the glossy brochures. Older specification documents may still use
‘cctalk’. No other case formats are officially recognised.

The name ‘ccTalk’ should be used by all manufacturers of new equipment on labels
and in technical manuals.

1.1.3. Does the name ccTalk refer to hardware, soft ware or a
written specification ?

All three. In essence the protocol as laid down by the written specification.

1.1.4. What is ccTalk and who uses it ?

ccTalk is a serial protocol for use in the Money Transaction Industry. It can be viewed
as a low speed, control network with a wealth of features covering all aspects of
secure credit transfer, status reporting, fault reporting and host control across a wide
range of industry-standard peripherals. It is used throughout the world in sectors such
as amusement, video, gaming, transportation, vending, telecommunications and retail.

1.1.5. Where do I get information on ccTalk ?

The most important document is the ‘ccTalk Serial Communication Protocol -
Generic Specification’ (of which this FAQ is now part) which explains how the
protocol works and the history behind it. More detailed information can be found in
product manuals for each ccTalk peripheral. The latest copy of the generic
specification can be obtained directly from Crane Payment Solutions - Money
Controls or via the ccTalk web site at www.cctalk.org.

1.1.6. Who is the controlling authority for ccTalk ?

It is currently with Crane Payment Solutions - Money Controls who originated the
specification but this is subject to review. Please send any comments you have on the
specification or suggestions for improvements or extensions to
abarson@moneycontrols.com

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 4 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1.1.7. Do I have to pay any fees to use it ?

No. The ccTalk protocol is ‘gifted’ to the industry and does not require a license fee
or royalties to be paid. There are no restrictions on use.

1.1.8. What software support can you provide ?

Crane Payment Solutions - Money Controls is primarily a hardware manufacturer and
does not provide a suite of tools for software development. We can provide
specification documents and some limited coding examples but we do not supply
software libraries, DLL’s, OCX’s, API’s etc. It is up to each manufacturer to write
their own ccTalk software.

1.1.9. Is ccTalk the same as RS232 ?

This is a ‘yes’ and ‘no’ answer. The underlying protocol is the same as RS232 in
terms of the asynchronous transfer of characters with start and stop bit frames.
However, two changes have been made to reduce the cost of implementation on
embedded peripherals. The transmit and receive lines on RS232 have been combined
into a single bi-directional data line (half-duplex operation) and the mark / space
voltages of ±12V have been changed to 0V / +5V.

1.1.10. How many wires are needed on ccTalk ?

A standard ccTalk serial bus only requires 3 wires. There is a supply voltage line, a
common 0V line and a bi-directional data line. Some applications require additional
power supply voltages and / or control signals and address lines.

1.1.11. What peripherals are covered by ccTalk ?

The specification covers coin acceptors, bill validators and payout devices such as
hoppers. There are plans to expand the command set to card payments and ticket
printers.

1.1.12. Why are the ccTalk command headers not in a sensible
order ?

Hindsight is a wonderful thing ! The ccTalk headers were created from 255
downwards as needs arose. They are roughly in the order coin acceptors, hoppers and
bill validators but with some turbulence. Ask any software engineer and she doesn’t
care - they are typed into an include file or global module and then forgotten about.
We tend to remember names much better than numbers.

1.1.13. I’ve heard about ccTalk encryption. What is it and when is
it used ?

The original ccTalk protocol did not use any kind of encryption. It was thought that
the security in a serial interface was so much better than a parallel one that no further
steps were necessary. However, a perceived threat was seen in the ability to empty a
full hopper bowl of coins with a simple connection to the multi-drop bus, as well as
the ability to clone high value credit packets on a bill validator. Therefore various

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 5 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

levels of encryption were added seamlessly to the ccTalk protocol. Hoppers use a
security key to unlock the dispense command and bill validators operate in secure
ccTalk mode with encryption on every command.

1.1.14. Has anybody written a ccTalk protocol analy ser ?

Crane Payment Solutions - Money Controls has a very basic software package called
‘ccAnalyse’. It is a simple comms monitoring application which runs on a PC under
Windows and decodes all data appearing on the RX pin of the RS232 connector
according to ccTalk rules. It is available on request but supplied ‘as is’ - without
instructions or warranty.

1.1.15. Can ccTalk run at anything other than 9600 baud ?

The standard ccTalk baud rate is 9600 and it is recommended that all peripheral
devices use this speed. The cost of supporting higher baud rates on small embedded
devices can be prohibitive. The operation of ccTalk at the packet formatting level is
unaffected by the baud rate and so the generic specification indicates that 4800 and
19,200 in certain applications would be an option. The mixing of baud rates on a
multi-drop bus is not acceptable however as it would result in too many errors.

Note that the year 2005 saw the beginning of a number of specialist ccTalk
applications running over a USB link with a virtual COM port driver. This allows
very high baud rates in excess of 1Mbps to be used. See Section 5.

1.1.16. How many peripherals can be supported on a ccTalk bus ?

This is an ‘it depends’ type answer. The address field of ccTalk is 1 byte in size. The
value of 0 is reserved as a ‘broadcast’ address. The value of 1 is the default source
address of the host machine. So that leaves a theoretical possibility of connecting 254
slave devices. In practice we cannot get anywhere near this figure for two reasons -
bandwidth and electrical loading. If all the peripherals require polling every 1 second
then the time slot available for each peripheral would be 3.9ms. This is not long
enough for a typical ccTalk message to complete. If the peripherals only require
polling when a certain action is being performed (e.g. dispensing coins from a hopper
) then this limitation could potentially be removed. Electrical loading is the result of
each ccTalk peripheral lowering the impedance of the ccTalk data line. The extent to
which this is done depends on the exact interface electronics used, but with a typical
configuration it is possible to connect a maximum of 10 to 20 devices.

1.1.17. What is the expected ccTalk data line volta ge ?

The idle state of the ccTalk data line is nominally +5V but will be slightly less than
this due to electrical loading. Anything between 4V and 5V should be treated as a
‘high’ by the interface electronics. Anything below 1V should be treated as a ‘low’.
Some early ccTalk products from Money Controls had the data line voltage pulled up
to the supply voltage of +12V or +24V but this is now discouraged.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 6 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1.1.18. How ‘noise-immune’ is ccTalk ?

How long is a piece of string ? The question can be looked at in terms of electronics
and software. On the electronics side, the ccTalk data line is driven by an open-
collector transistor onto a low-voltage wire with a weak pull-up resistor. So compared
to RS485 which uses differential current drivers and a balanced line, we have a
susceptible system. In terms of software however, there are safeguards such as CRC
checksums and infinite retries which allow any burst of electrical noise to only
temporarily disrupt serial communications. In that sense ccTalk is a ‘resilient’
protocol, even if response times cannot be guaranteed in noisy environments.
However, the criticality of any single-shot process such as a bill credit event has been
removed in the upper layers of the protocol through event buffering.

In short it is recommended that ccTalk is used for ‘in-machine’ hook-up of peripheral
devices where the total length of the ccTalk data wire is less than 10m. For connection
between machines and between sites another physical layer should be used such as
RS485, Ethernet, modem etc. In principal there is no reason why ccTalk cannot be run
over these other layers without change as there are very few timing requirements
above those of the command and response loop delay.

1.1.19. Can I run ccTalk over USB ?

The simple answer is yes. If you know about the different ‘classes’ that are available
on USB then you may have heard about the CDC or ‘COM class’. This refers to the
software required to convert a high-speed data link provided by the USB hardware
into a RS232 emulation. So using a COM class converter, ccTalk can be run over
USB ‘transparently’ - as if the USB pipe was not there. The speed advantages of USB
would not be apparent in a conventional multi-drop system however as there would be
a 9600 baud bottleneck on existing peripherals.

USB to RS232 converter cables are now widely available and relatively inexpensive.
When the driver is installed on a PC, a virtual COM port should be available for use
with ccTalk. See Section 5 for more information.

1.1.20. Is there a ccTalk test house or approval fa cility ?

Not at this point in time. We operate a process of self-certification.

1.1.21. When was ccTalk ‘invented’ ?

We prefer to say that ccTalk ‘evolved’ from earlier protocols and after much
consultation within the industry, rather than magically appearing on a particular date.
The earliest ccTalk labelled specification was generated in 1996.

1.1.22. What kind of timing problems can I get with ccTalk ?

The timing of ccTalk essentially boils down to firing a command packet to the
peripheral and waiting for a reply to come back. Within each packet there is an
expected maximum delay between bytes. So subject to these two ‘timeout’ conditions,
no other timing problems should arise, unless specifically documented with the
peripheral.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 7 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

A typical transfer would see the host machine send a message to the peripheral. If no
response is obtained within 1 second (this could be much shorter depending on the
command) the host could try again. When the reply is being received, any gap of
more than 50ms between received bytes would force a reset of the receive pointer. In
other words, it would cause the current message packet to be abandoned and a new
one started with the ‘destination address’ assumed to be next.

Commands on a multi-drop bus can be sent ‘nose to tail’. In other words as soon as
the host receives the complete return packet from peripheral A, it can send the next
command to peripheral B with zero delay between. So the start bit of the peripheral A
destination address can come immediately after the peripheral B checksum stop bit. In
practice there will probably be a delay of a few milliseconds.

1.1.23. My ccTalk software doesn’t work. What shoul d I do ?

The reasons could be many and varied so it is best to start with the simplest possible
ccTalk command and work up from there. The ccTalk header 254 is a ‘Simple poll’.
The peripheral replies with an ACK and all ccTalk peripherals must support it.

For a peripheral on address 2 and assuming 8-bit checksum and no encryption…

Host sends [2] [0] [1] [254] [255]
Slave returns [1] [0] [2] [0] [253]

The values between brackets are bytes with the decimal value shown.

If there is no response from the slave then check the following…
• Is there power on the ccTalk +Vs line ?
• Is the peripheral operating in serial mode ? There could be a DIL switch or

connector pin option.
• Is the ccTalk data line high in idle ?
• Does the ccTalk data line go low during message transmit ?
• Is each low bit about 1ms (9600 baud value) ?
• Are the signal transitions fast and clean ? Check with an oscilloscope.
• Does the peripheral use CRC checksums and encryption ? If so the above example

will not work !

1.1.24. Is there a web site for ccTalk ?

Yes - visit www.ccTalk.org

1.1.25. Is there a user group for ccTalk ?

Contact Crane Payment Solutions - Money Controls for the latest information. An
initial UK group was set up in 1999 to promote ccTalk use throughout the industry
but now any discussion is carried out by email.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 8 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1.1.26. How does ccTalk perform error correction an d retries ?

There is nothing in the transport layer of ccTalk to assist in the automatic retry of
messages with bad checksums - this has been left entirely to the discretion of the
application layer. This has advantages in that the host software can be made as simple
or as complicated as the application requires. The host can retry once, 3 times, 10
times, for 1 second, for 10 seconds etc. It can even have infinite retry.

The conditions for message retry are based on the following points…
• No response is received from the slave (the standard ccTalk error condition)
• A NAK message is received from the slave (used with hoppers)
• There is a low-level RS232 framing error (stop bit invalid)
• There is a data underrun or overrun based on the ccTalk length field
• The message is received with a bad checksum
• The message is received with an incorrect address or header field

The ccTalk commands are structured such that infinite retry can be attempted without
penalty. Rather than the ‘toggle bits’ that some protocols use to distinguish between
an original message and a retry message, ccTalk uses a full-byte event counter to
prevent single-shot events from being re-issued or miscounted. Only a few commands
are subject to the software overhead of an event counter - the rest do not need it and
do not have it.

1.1.27. Why are there so many approved ccTalk conne ctor types ?

Ideally there would be just a single ccTalk connector type but practical realities have
meant that different connectors have ‘evolved’ to suit different applications over the
years. Part of the standardisation process within ccTalk is to reduce the number of
options available.

At the moment coin acceptors and bill validators should use a 10-way, dual row,
mechanically-keyed, 0.1 inch pin header and serial hoppers should use a 10-way,
single row, mechanically-keyed, 0.1inch pin header. There is an option on 3.5inch
coin acceptors to fit the smaller 4-way JST connector where PCB space is severely
restricted.

1.1.28. How do I go about obtaining ccTalk encrypti on
documents?

The encryption documents are obviously sensitive and will not be made available in
the public domain. If you require the documents for serial hoppers or bill validators
then contact Crane Payment Solutions - Money Controls and we will send out the
necessary paperwork for signing prior to you being sent a copy by post. The use of
email to circulate these documents is strictly prohibited.

1.1.29. Other serial protocols seem more sophistica ted. Why is
this ?

There are various features which have been deliberately left out of ccTalk to simplify
the implementation and to lower the cost. There is no ‘hot plugging’ of ccTalk
peripherals. If you add a ccTalk peripheral to a powered bus then the host machine

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 9 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

has no way of knowing this has been done. Likewise if a ccTalk peripheral is removed
from the bus, the next command to it from the host will fail. The host may decide the
peripheral is missing or faulty - it has no way of knowing. Also, the use of ccTalk is
restricted to ‘single master’ applications. If there is more than one ccTalk master on
the bus then message packets will collide and the protocol becomes very inefficient.
The addition of a ‘Busy’ line would help but as virtually all applications in the Money
Transaction Industry are single master, and need to be for security reasons, the
protocol has been biased this way accordingly.

1.1.30. My 8-bit checksum is wrong. Why ?

If you send a message to a ccTalk peripheral with an incorrect checksum then it will
not reply.

The 8-bit checksum is calculated by adding up all the message bytes from the
destination address to the last data byte and finding the value when added to it will
produce zero in modulo 256 arithmetic.

For example, the ccTalk command to enable all coin inhibits is…

[2] [2] [1] [231] [255] [255] [checksum]

2 + 2 + 1 + 231 + 255 + 255 = 746 = 234 modulo 256 (= 256 x 2 + 234).

Checksum = 256 - 234 = 22

Therefore the complete message is

[2] [2] [1] [231] [255] [255] [22]

2 + 2 + 1 + 231 + 255 + 255 + 22 = 768 = ZERO modulo 256 (= 256 x 3 + 0).

1.1.31. My CRC checksum is wrong. Why ?

If you send a message to a ccTalk peripheral with an incorrect checksum then it will
not reply.

A 16-bit CRC may used in ccTalk, positioned in the message packet as follows…

[Dest. Addr.] [Size] [CRC-16 LSB] [Header] [Data 1]… [Data N] [CRC-16 MSB]

It can be seen that the ‘Source Addr.’ field of ccTalk has been replaced by the lower
half of the 16-bit checksum. This is possible because the source address is redundant
in a single-master system. It is advantageous to keep message lengths the same so that
CRC and non-CRC protocols can be mixed on the same bus.

The CRC algorithm has a number of options and you need to have them exactly right
for it to work in all cases.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 10 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

The ccTalk protocol uses the following parameters…
• CRC-CCITT
• Polynomial = x^16 + x^12 + x^5 + 1
• Initial crc register = 0x0000

The algorithm in ‘C’ is included in Part 3 of the generic specification. It is necessary
to have some programming experience as calculating it by hand is no fun.

A simple poll would have the following CRC data…

TX : [40] [0] [a] [254] [b]
a = 182 b = 33

RX : [1] [0] [a] [0] [b]
a = 48 b = 55

1.1.32. What is the longest ccTalk message size ?

The 2nd byte of a ccTalk message is the ‘no. of data bytes’. This is not the total size of
the message packet but the size of the data payload only. A message with no data
bytes would still be 5 bytes in size. It is possible to have 255 data bytes such that the
maximum packet size is 260 bytes.

The maximum implemented ccTalk data size is often just over 128 bytes. This is used
for certain commands when splitting up large blocks of data into ccTalk message
packets. Sending a block number or address along with 128 bytes of data is a nice
binary number for filling flash memory etc.

It is not always necessary to store the entire ccTalk data message before processing it.
The message can be received and ‘thrown away’ or handled ‘on-the-fly’.

1.1.33. How do I know when a new ccTalk message beg ins ?

This problem has to be dealt with by all ccTalk nodes. In a stream of data bytes how
do you know when one message ends and another begins ? The answer is by byte
counting. Every ccTalk message consists of an address byte followed by a size byte.
After the size byte another ‘3 + size’ bytes follow before the next message begins.
Every ccTalk node must receive and count all bytes, even if the message is not
addressed to them. Fortunately, the processing resource to do this is very small and it
can be done as a ‘background task’. Another problem arises where the start of a
ccTalk message is unknown or incorrect in the first place - the problem of message re-
synchronisation. To solve this ccTalk relies on the use of a ‘data timeout’. Since gaps
between messages will be far higher than the gaps between bytes in a ccTalk message
packet, this longer time can be used to reset the receive pointers and re-synchronise
the address byte detection. If there is a gap of more than 50ms between incoming
bytes, it can be assumed a new message is starting. This process is also essential in
dealing with electrical noise which could disrupt the incoming byte stream and force a
bad checksum.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 11 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1.1.34. I don’t understand MDCES commands. Can you explain ?

MDCES stands for ‘Multi-Drop Command Extension Set’. A special subset of
commands was included in ccTalk to help with address resolution. For most
applications the address of ccTalk peripherals is pre-determined and no issues arise.
The coin acceptor is on address 2, the hopper on address 3 and the bill validator on
address 40. But suppose we have 2 coin acceptors, 4 hoppers and 2 bill validators on
the same bus ? They must all have unique addresses to work. The address of ccTalk
peripherals can be stored in RAM or EEPROM to allow dynamic addressing. The
MDCES commands should only be used where the network configuration is unknown
as the commands are slow to execute and randomising addresses can result in further
clashes which then have to be resolved again. As the likelihood of having more than
one hopper connected to a machine bus is very high, hopper addresses can be changed
on the connector wiring harness which avoids the need for address resolution.

Header 253, Address poll
This command is used with the broadcast address to find out which devices are
connected to the bus. Each peripheral responds with its address delayed by a
proportionate time. The return packet is a single byte, breaking the normal ccTalk
packet rules. Devices with the same address could clash producing spurious
addresses.

Header 252, Address clash
This command is used to verify a specific peripheral address. Each peripheral
responds with its address delayed by a random amount of time. Devices with the same
address have a good chance of being resolved.

Header 251, Address change
This command is used to change a peripheral address to the value specified. The next
command to this peripheral should be to the new address.

Header 250, Address random
This command is the solution to any kind of clash problem discovered with the
previous commands. All peripheral addresses are randomised (by sending the
broadcast address) in the hope that they will all become unique. There is a good
chance of this happening where the total number of peripherals is small - usually less
than 10.

Peripherals will not randomise their addresses to 0 or 1.

1.1.35. How do I know which version of ccTalk to us e ?

At this moment in time there is really only one version of the ccTalk specification.
There are various options such as encryption on bill validators but these are now well
established. Future revisions of the specification have been broadly compatible with
older revisions and no issues have arisen so far. If a peripheral doesn’t support a
particular ccTalk command then there is no response and alternative commands or
actions can be taken by the host machine.

The version of ccTalk that a peripheral supports can be requested with command
header 4. Three bytes are returned. The first byte is the level and the second 2 bytes

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 12 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

refer to the ccTalk generic specification revision. The level is used for minor changes
/ bug fixes (as determined by the peripheral manufacturer) and the revision for
protocol conformance.

1.1.36. Do I send decimal, hexadecimal or ASCII val ues in ccTalk ?

This can cause confusion in many serial protocols and is a common source of error. In
the product specifications, any byte values which are sent to the peripheral in an
example such as [0] or [1] means the DECIMAL VALUE, not the ASCII
representation of this number. If the values are in hexadecimal, this will be made
clear.

Hexadecimal numbers (hex numbers) when applied to bytes are up to 2 characters
long and may include the characters A to F as well as the digits 0 to 9.

e.g. 12, 5F, AA, 9C and 5 are all hex numbers.

In C they are written as 0x12, 0x5F, 0xAA, 0x9C and 0x05.
In Visual Basic they are written as &H12, &H5F, &HAA, &H9C and &H5.

A value such as 12 is ambiguous because it could be 12 decimal or 12 hexadecimal (
= 18 decimal).

An ASCII representation of a number is totally different to the number itself. The
ASCII code for 0 is 48 decimal. The ASCII code for 1 is 49 decimal. They increase in
sequence.

ASCII codes are normally enclosed in single or double quotes such as ‘A’ or “A”.

So a byte sequence [‘1’] [‘2’] [‘3’] would be in ASCII.

1.2 Host Machine Manufacturer Questions

1.2.1. How do I connect a PC to a ccTalk peripheral ?

A ccTalk device cannot be connected directly to a PC serial port because the single
bi-directional data lines need to be split into TX and RX lines, and the data voltages
need to be changed from TTL to RS232 levels. This can be done with a RS232
converter chip, 2 transistors and a diode. A circuit diagram is provided in Part 3 of the
generic specification.

It is possible to manufacture a device which uses the ccTalk protocol but with a
RS232 connector fitted for direct connection to a PC.

1.2.2. Is there a standard ccTalk ‘driver’ I can us e ?

Crane Payment Solutions - Money Controls does not currently issue any software
drivers to use on a PC-based platform. It must be said that the requirement for drivers
is minimal as the ability to transmit and receive bytes through the serial port is fully
supported in C and Visual Basic development environments, and the formation of
ccTalk message packets is a relatively simple task for a software engineer.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 13 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1.2.3. Is it possible to have 2 ccTalk masters on t he same bus ?

This is theoretically possible in the base protocol as the source address can be used to
discover which master issued the command. However, multi-master ccTalk systems
are strongly discouraged as the probabilities of message clashes are high and data
integrity cannot be guaranteed. It is possible to add additional hardware to switch
masters in and out of the bus, or to provide a ‘busy’ line, but the remit of this falls
outside the published ccTalk specification. Note that when encryption is used, the
source address field is mapped into a CRC checksum and so this method of
determining the master is lost. The master is always assumed to be address 1.

1.2.4. Why is the original PNP ccTalk interface cir cuit now
obsolete?

An early ccTalk interface circuit used a PNP transistor for receiving data, with the
base connected to the ccTalk data line. It soon became apparent that the serial hoppers
were dragging the data line down to 4.5V which was turning on the PNP transistor
whilst in idle. The PNP was therefore replaced by a diode and this has fixed the
problem.

1.2.5. If I use the broadcast address, all the resp onses clash. So
why use it ?

Good question but there is a reason. The broadcast address was originally included in
the protocol to allow the MDCES command, ‘Address poll’, to be sent to all devices
simultaneously. Responses to this command are single bytes and staggered in time so
the chance of a collision is much reduced. Also, if you wish to randomise all
addresses on the ccTalk bus then you can send the MDCES command ‘Address
random’ and ignore the return ‘garbage’ data (clashing ACKs) for a set time. This
approach works for all non-critical commands where return data is not needed.

Another use is when a single peripheral is connected to a diagnostic terminal and you
are unsure what the address is. By using the broadcast address you can be sure the
peripheral will reply. This turns out to be incredibly useful in practice.

1.2.6. Can I run a ccTalk serial cable between mach ines ?

This is possible but screened cable would be recommended to reduce noise. The
standard ccTalk interface electronics are only designed for short distance hook-up of
peripherals within a machine rather than between machines.

1.2.7. I use Linux. Is that a problem ?

The use of ccTalk is not restricted in any way by the choice of operating system. The
only requirement when developing host software is the ability to control and access a
UART.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 14 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1.2.8. My company does not have electronic engineer ing resource.
How do I use ccTalk ?

For companies developing software on a PC, Crane Payment Solutions - Money
Controls can supply a RS232 to ccTalk interface box. The only task remaining is to
write the application and ccTalk control software.

1.2.9. My company does not have software engineerin g resource.
How do I use ccTalk ?

Since ccTalk is a serial protocol, software resource will be required to make it work
with your application. Sub-contracting is probably the only option, although given the
nature of the protocol this should be a relatively simple task.

1.2.10. How do I know what coins and bills are avai lable to me in a
peripheral ?

There are ccTalk commands available which list the coins and bills that can be
accepted by the peripheral. This removes the need for a fixed look-up table.

Header 184, Request coin id
Header 157, Request bill id

The host machine should perform an ‘enumeration’ of coins and bills during the
power-up initialisation routine. For each programmed channel or position within the
validator, which corresponds to the serial credit code returned during polling, the host
machine reads out the associated coin or bill identification string. These are then
stored in a ‘RAM table’ which are available for look-up as credit codes are generated.

1.2.11. I have local echo. Is that correct ?

The ccTalk protocol uses a bi-directional data line. Any transmitted data will appear
on the data bus and therefore most likely immediately on the receive port of the
transmitting device. This is indeed the case with the standard ccTalk PC interface
circuit (see circuit 4 in Part 3 of the generic specification). The software can disable
the receive port while transmitting, or clear the receive buffer immediately afterwards,
but the most elegant solution is to index into the receive buffer the number of
transmitted bytes in order to find the reply packet. So if the ccTalk master sends a 6
byte message packet it will read the reply packet at byte position 7 since the first 6
bytes will be a straight copy of the transmitted packet. If this is not the case then it can
be assumed there is a catastrophic comms failure.

When the slave device replies, it too will have local echo and will have the host reply
packet in its receive buffer. This will be addressed to the master device with return
command header zero. This message should therefore be ‘ignored’ by the slave
firmware - wrong address.

The existence of local echo is a common occurrence in many communication systems
and can easily be allowed for once you know it is happening.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 15 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1.3 Peripheral Manufacturer Questions

1.3.1. What is the minimum hardware I need to run c cTalk ?

ccTalk is one of the simplest asynchronous protocols that it is possible to use.
Although it is multi-drop and supports variable message lengths, there is no 9th
address bit or wake-up bit in the character frame. The need for parity bits has also
been removed. Although it is possible to write a software UART on a microcontroller
to support ccTalk, the use of a hardware UART eliminates many of the potential
timing problems that can occur. A typical microcontroller requirement for ccTalk
would be a 8-bit core with a 8/16-bit timer, hardware UART and 2K ROM.
Application code would be additional to this of course. The amount of RAM depends
on whether messages are fully buffered in the transmit and receive paths or whether
they are processed ‘on-the-fly’. Typically anything from a few tens of bytes to a few
hundred bytes of RAM.

1.3.2. How do I create a ccTalk product ?

Any peripheral manufactured with an interface conforming to the ccTalk generic
specification can be referred to as a ccTalk product. Commands exist to identify the
manufacturer, product name, build code, software revision, ROM checksum, serial
number and manufacturing date. All these fields can be filled in appropriately.

1.3.3. I need some extra ccTalk commands. How do I do it ?

Existing commands should be used wherever possible as this massively simplifies
machine software and helps the process of global standardisation. However, if none of
the new features you wish to support are a ‘good fit’ with existing command and data
fields, then headers 20 to 99 are available for custom use. No agreement is necessary
within the industry as they are all regarded as application and manufacturer specific.
For a host machine to make use of these extra commands, it should identify the
product first to see if they are supported. Header 99 may be used on Product A from
Manufacturer A to do Task A, but the same header may be used on Product B from
Manufacturer B to do Task B.

It is essential that if these extra commands are regarded as generally useful throughout
the industry that they are promoted to the public header section of the ccTalk
command set as soon as possible. This prevents the widespread distribution of custom
machine software. Please contact Crane Payment Solutions - Money Controls if you
wish to expand the ccTalk command set in this manner.

1.3.4. I want to add some ‘secret’ ccTalk commands. How do I do
it?

Header 255 is the ‘Factory set-up and test’ command and can be used by any
manufacturer for internal functions. No details of these functions need ever be
published. If thought necessary, various security mechanisms can be put in place to
protect this command from unauthorised use. One of the simplest is a PIN number.
Although only a single ccTalk header is defined for this function, the first byte of the
data payload can be a sub-header, expanding the command set in any way required.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 16 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1.3.5. What power can I source over a ccTalk serial bus ?

There is currently no specification for the power available over ccTalk to each
peripheral. It is assumed that the host machine power supply is rated sufficiently to
drive all peripherals that may be attached to the bus. Unlike USB which places a limit
of 0.5A at 5V and which supports random hot-plugging of peripherals, all ccTalk
networks will be pre-determined and the power calculation will have been done at the
system design stage. It is likely that a machine manufacturer will place a requirement
on the peripheral manufacturer when approving new devices.

Coin hoppers are particularly ‘hungry devices’. The serial hoppers manufactured by
Crane Payment Solutions - Money Controls require 3A peak at +24V. We recommend
that only a single coin type is dispensed at a time, to reduce the requirement for heavy
gauge bus wires and more expensive connector types. It also reduces the amount of
‘ground shift’ that can occur when all motors are running. The standard electrical
interface circuit of ccTalk is open-collector and is sensitive to these shifts.

Each peripheral manufacturer has the option of fitting a separate power supply
connector to reduce the loading on the main ccTalk bus. In this case only the 0V and
data line need to be connected to the bus with the supply voltage coming from the
auxiliary connector.

1.3.6. Does ccTalk support remote download of coins and bills ?

Yes - support is provided. The bill validator commands are in the public header
section while the coin acceptor commands are currently in the application specific
section.

Each peripheral manufacturer will have a very different method of downloading new
coin sets or bill tables into a peripheral and so it is pointless standardising the process
beyond a generic block transfer of data. Variable length data from a few bytes to
millions of bytes is supported. The format of the data has been left to each
manufacturer. The ‘begin’ and ‘finish’ commands have been included to allow a
convenient method of invoking a FLASH memory erase and program cycle.

Header 143, Begin bill table upgrade
Header 144, Upload bill tables
Header 142, Finish bill table upgrade

1.3.7. Can I implement ccTalk on a Microchip PIC mi crocontroller?

Yes - even a small PIC microcontroller can be used for a ccTalk peripheral. The Mk 1
serial hopper from Money Controls used a PIC12C671 for the entire application. This
8 pin device has 1K(word) ROM, 128 bytes RAM and an internal RC oscillator. 28
ccTalk command headers were implemented.

1.3.8. Is there a ccTalk logo I can use on my produ cts ?

Not yet but this will change if a new certification process is adopted.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 17 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

1.3.9. I haven’t got time to respond on ccTalk. How do I solve this
problem ?

The environment in which ccTalk operates is a master-polled one. The master will
poll round each peripheral in turn, usually looking for new events, and it is the duty of
each peripheral to respond promptly. If a peripheral does not respond immediately
then it is preventing other devices from being polled and eventually the bus will
become unusable. The options for a peripheral which is ‘busy’ on other tasks are as
follows…

a) Send a ‘no event’ reply.
The peripheral software should be capable of handling message responses as a
‘background’ task. It should at least be able to respond to an event poll with the same
response as last time and as the event counter will be unchanged this indicates to the
host that no new events have occurred - even if they really have. The effect is to delay
the reporting of events until a more convenient point in the peripheral software. This
method does not require special action on the host side and system polling can
continue as normal. To generalise this approach further, ccTalk commands should be
split into ‘immediate response’ and ‘initialisation and diagnostic’ commands. Only
the immediate response commands will be handled with the peripheral in a ‘cash in /
cash out operating state’, the others can be dealt with at switch-on or when using
diagnostic routines. The immediate response commands are not listed in the generic
specification but are typically simple polls, inhibit modifying and event polling. Also
any commands used to switch encryption keys.

b) Send a BUSY response - header 6.
The normal command return header is zero but if it is 6 then this indicates to the host
machine that the peripheral is too busy to reply. Use of this method is discouraged -
consider making serial communications a higher priority task.

c) Do not respond.
Obviously this option is always open to the peripheral but the host has no choice but
to wait for a ‘timeout’ value and then retry or move on to the next peripheral. The host
will want the timeout value to be as short as possible. It also has no idea which of the
following conditions has occurred…
• Peripheral too busy to respond
• Peripheral removed from bus
• Power lost from peripheral
• Peripheral developed a fault
• Message corrupted (bad checksum)
• Incorrect address or encryption settings

1.3.10. How do I register our company name ?

The ccTalk command ‘Request manufacturer id’, header 246, requests the ASCII
identification string from the peripheral. There are currently 2 formats listed in the
generic specification - full names and abbreviated names. Abbreviated names consist
of 3, unique, upper case characters. Abbreviated names have been recommended for
use on bill validators. If you wish to have a company listed in the generic
specification and you are a manufacturer of ccTalk peripheral equipment then please
contact Crane Payment Solutions - Money Controls. Host machines will vary in the

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 18 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

action they will take on discovering an unknown manufacturer. Some machines will
only operate with a previously approved company and product identifier. Others will
ignore this technicality and continue operation with the generic command set.

1.3.11. How do I report multiple fault codes ?

The ccTalk protocol currently only supports priority fault code reporting. The fault
code is returned in response to ccTalk header 232, ‘Perform self-check’. So if fault
codes A, B, and C suddenly develop on a product, which is unfortunate in the
extreme, fault code A is returned until fixed, then B and finally C.

1.3.12. How does polling work with a fast coin acce ptor in
gaming?

A coin acceptor for gaming may be capable of accepting 20 coins per second in short
bursts. However, the ccTalk host controller may only be polling the coin acceptor
once per second. So how can we not lose any credit information ? The simple answer
is buffering. The ccTalk command header 229, ‘Read buffered credit or error codes’,
can read up to 5 new credits. So in 4 seconds the host machine can discover all the
coins put down in a second. This relies on peripheral ‘double-buffering’. There is a 10
byte transmit buffer containing credit events and a much deeper credit stack allowing
continuous coin feeding. Eventually the stack will run out of course and the coin
acceptor would have to self-inhibit for a few seconds.

There are a number of complications to this ideal scenario.

The first is that if 5 new credits are transmitted at each request and some return
communication error means the host has to retry the command, it would lose that
credit information. The event counter would indicate 5 missing credits but no details
of those credits could be obtained. For this reason it is recommended that only 2 new
credit events are added to the transmit buffer at each poll. This allows a single retry to
be made without loss of data. To compensate for this reduction in data transfer it is
recommended the coin acceptor is polled every 200ms. So 10 coin credits can
obtained every second, and 20 coins would be handled in 2 seconds, twice the coin
insertion time.

The second is power loss. The disadvantages of a deep stack are that if power is lost
then the entire stack is lost unless it is backed up to non-volatile memory. This is true
though of any serial protocol where the transfer of data is potentially slower than the
coin entry speed. Also, any serial protocol where the transfer of data is slower than
the power supply fall time can lose a single credit. So it is up to the system designer to
ensure that vulnerability to power loss is at a minimum, whether it is through the use
of battery-backed RAM and / or system boards, EEPROM memory or minimum
polling requirements.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 19 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

2. ccTalk PDR - Peripheral Design Rules

Now that ccTalk has been adopted by many peripheral manufacturers throughout the
world, we are looking at tightening up some areas of the specification which have
been open to interpretation. This will lead in future to better interoperability. Please
regard these as being in force on new product designs.

2.1 Coin Acceptors

2.1.1. Rule 1 - Command Set

A minimum set of commands must be implemented on coin acceptors. Refer to
Appendix 13, Minimum Acceptable Implementations, in Part 3 of the generic
specification.

2.1.2. Rule 2 - Credit Poll Timeout

The coin acceptor should stop accepting coins if there is fault with the host machine.
The integrity of the host to device link is established through credit polling. If the host
machine fails to poll the coin acceptor at least every 1 second then the coin acceptor
should self-inhibit. When the host machine resumes polling, this self-inhibit should be
removed automatically by the coin acceptor. The host machine does not need to
explicitly re-enable the coin acceptor.

2.2 Bill Validators

2.2.1. Rule 1 - Command Set

A minimum set of commands must be implemented on bill validators. Refer to
Appendix 13, Minimum Acceptable Implementations, in Part 3 of the generic
specification.

2.2.2. Rule 2 - Credit Poll Timeout

The bill validator should stop accepting bills if there is fault with the host machine.
The integrity of the host to device link is established through credit polling. If the host
machine fails to poll the bill validator at least every 5 seconds then the bill validator
should self-inhibit and insert a ‘Master inhibit active’ event on the event code stack.
Any illumination on the front of the bill validator should indicate out-of-service.
When the host machine resumes polling, it should see the master inhibit event and re-
enable the bill validator with the ‘Modify master inhibit status’ command. The
illumination on the front of the bill validator should then indicate that bills can be
inserted.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 20 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

2.2.3. Rule 3 - Escrow Operation

If a bill validator supports escrow mode then it should be enabled by default at power-
up. It should not be necessary to select escrow operation with the ‘Modify bill
operating mode’ command. To test whether escrow mode is available then the host
machine can use the ‘Request bill operating mode’ command.

2.3 Payouts

2.3.1. Rule 1 - Command Set

A minimum set of commands must be implemented on payouts. Refer to Appendix
13, Minimum Acceptable Implementations, in Part 3 of the generic specification.

2.3.2. Rule 2 - Event Counter

The event counter is returned by the ‘Dispense hopper coins’ command and during
polling with the ‘Request hopper status’ command. If a dispense command is sent
from the host machine to the hopper and it is corrupted by noise then the hopper does
not see a valid ccTalk message and there is no reply. No action is taken by the hopper
and its operating state is unchanged. The host machine can check the event counter
and re-issue the dispense command. However, if the hopper receives the command
without error but the reply back to the host machine is corrupted, then the host was
either sent an event counter by way of an acknowledgement or a NAK packet to say
the dispense operation was refused. It may be possible to immediately request the
hopper status to find out whether coins are actually being dispensed but if the hopper
has finished then the only way of knowing what happened might be to read the
dispense counter and compare it to the value before the command was sent. For this
reason it is preferable to only increment the event counter if the dispense
command was accepted and coins paid (or tried to be paid in the event the hopper
was empty). The next encryption key should be generated by the hopper regardless of
whether the command was ACK’d or NAK’d. The host machine therefore always
needs to request a cipher key prior to a dispense command being sent.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 21 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

3. ccTalk ‘Combo Devices’ White Paper

One question that can arise on ccTalk is ‘Can we combine several peripherals into one
combo device and operate it through a single ccTalk connector ?’ The schematic for
this is shown below.

Figure 1 shows a classic ccTalk bus with daisy-chained peripherals. Each peripheral
exists in its own right on the ccTalk bus and has a unique address.

Figure 2 shows a combo device perhaps consisting of a coin acceptor and three
hoppers or a coin acceptor, bill validator, card reader and printer. Physically they exist
as a single unit with a single ccTalk connector. Device 1 may consist of a single MPU
board and the other devices could be ‘dumb’ peripherals with electronics but no
firmware. The link between device 1 and the other devices may or may not be serial.
If serial then it is probably not ccTalk since the topology would then be identical to
Figure 1, assuming the bus is common. However, an isolated bus would allow split
master operation which is not a case considered here.

The main problem is how do we operate functionally different devices through a
single, and by implication single ccTalk address, connector ?

Device 1 Device 2 Device 3 Device 4

ccTalk

ccTalk Device 1

Device 2 Device 4

Device 3

Combo
Device

Address ‘A’ Address ‘B’ Address ‘C’ Address ‘D’

Address ‘A’

Figure 1

Figure 2

non-

ccTalk

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 22 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Consider the following commands and technologies…

• Header 245, Request equipment category id
• Header 244, Request product code
• Header 192, Request build code
• Header 242, Request serial number
• Header 241, Request software revision
• Header 4, Request comms revision
• BNV encryption
• Hopper encryption
• Headers 250-253, MDCES commands

We could create a new category of device such as ‘Changer’. This would have a
single ccTalk address and a unique identification.

For example…
Request equipment category = ‘Changer’
Request product code = ‘MagicPayDay’
Request build code = ‘Standard’
Request serial number = 12,345,678
Request software revision = ‘SP-1.00’
Request comms revision = 1.4.6

The problem now is how do we address individual devices within the combo device ?
For instance, how do we dispense coins from hopper 1 rather than hopper 2 ? How do
we perform diagnostics on, and differentiate fault codes between, a coin acceptor and
perhaps a bill validator ? The ‘Modify inhibit status’ command is the same for coin
acceptors and bill validators so how can we ‘steer’ it towards one device and away
from another ? If we wish to use unencrypted ccTalk on the hoppers but encrypted
ccTalk on the bill validator then how can that work ?

Consider now solutions for a Changer comprising a single coin acceptor, bill validator
and multiple hoppers.

3.1 Solution 1 : Manage As Single Device

We treat the entire system as a single device with a single identity. This identity is
‘Changer’. We now need to add additional bytes to many ccTalk commands to
operate the devices independently. As we are not allowed to modify existing ccTalk
commands this means creating lots of new ones.

For instance, the Dispense hopper coins command would become…
Transmitted data : [hopper no.] <encryption data> [no. of coins]

The Request hopper status command would become…
Transmitted data : [hopper no.]

The Perform self-check command would become…
Transmitted data : [coin acceptor or bill validator]

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 23 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

If the encryption layer is switched on then all devices would be encrypted as all
commands go to one address. The hopper encryption key could be unique to each
hopper as the ‘Request cipher key’ command would have a [hopper no.] byte added
to it.

The MDCES commands would operate as normal on the single ccTalk address.

3.2 Solution 2 : Manage as Multiple Devices on Single Address

The trick here would be to add a new ccTalk command which specified a sub-address.

Header XXX : Forward ccTalk packets

Transmitted data : [mode] [forward address]
Received data : ACK

[mode]
0 - no packet forwarding
1 - forward next packet only
2 - forward all packets until cancelled with 0

[forward address]
0 to 255 - sub-address of ccTalk peripheral

This would allow existing ccTalk commands to be forwarded to the specified sub-
address without changing them. Each virtual device would have a unique sub-address.

Assume the Changer is on address 200.

To dispense coins from hopper 1…

TX : [200] [2] [1] [XXX] [1] [3] [CHK] - next command sent to sub-address 3
RX : [1] [0] [200] [0] [CHK]

TX : [200] [9] [1] [167] [sec1] [sec2] [sec3] [sec4] [sec5] [sec6]
[sec7][sec8] [noCoins] [CHK]
RX : [1] [1] [200] [0] [events] [CHK]

To dispense coin from hopper 2…

TX : [200] [2] [1] [XXX] [1] [4] [CHK] - next command sent to sub-address 4
RX : [1] [0] [200] [0] [CHK]

TX : [200] [9] [1] [167] [sec1] [sec2] [sec3] [sec4] [sec5] [sec6]
[sec7][sec8] [noCoins] [CHK]
RX : [1] [1] [200] [0] [events] [CHK]

So all host communication is to address 200 but commands could be sent to virtual
peripherals on sub-addresses if required. Each virtual peripheral could have its own
serial number and identity.

Rather than create a new category called ‘Changer’ on address 200 we could put the
coin acceptor on address 2 and have the hoppers addressable via the coin acceptor. So
all commands (even those intended for the hoppers) would go to address 2. This
means a new category is no longer required.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 24 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

If the encryption layer is switched on then all devices would be encrypted as all
commands go to one address. The hopper encryption key could be unique to each
hopper as the Request cipher key command is forwarded to the correct sub-address.

The MDCES commands would operate as normal on the single ccTalk address. It
would be possible to forward MDCES commands to the sub-addresses but this seems
unnecessarily complicated and could be prevented. For instance, if we forward a
broadcast address to all sub-addresses then do real and virtual devices all reply ?

3.3 Solution 3 : Manage as Multiple Devices on Multiple Addresses

This requires Device 1 to have a virtual address handler. It will check for an address
match on a range of addresses, e.g. 2 to 5 and 40. Address 2 commands will be
handled by the coin acceptor firmware module and addresses 3, 4 and 5 will be
handled by the corresponding hopper firmware module. Address 40 will be handled
by the bill validator firmware module.

From a host software point of view, operation is identical to Figure 1. The coin
acceptor, bill validator and hoppers could have their own serial numbers and identity
if required.

If the encryption layer is required on any of the devices then Device 1 can decide by
looking at the address byte whether to decrypt the incoming message or not (the
address byte and no. of data bytes are never encrypted). The hopper encryption key
could be unique to each hopper.

The MDCES commands could be supported on virtual devices if software is written
to handle the additional complexity. For instance an ‘Address poll’ on the broadcast
address could return all virtual addresses. An ‘Address random’ on the broadcast
address could change all of the virtual addresses to new ones. The alternative is to
prevent any address changes from occurring.

3.4 Summary

The table below summaries what has been discussed.

Solution Addresses Additional ccTalk commands Encryption Layer
1 Single Many All or Nothing
2 Single One All or Nothing
3 Multiple None Selectable

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 25 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

3.5 Conclusion

Solution 1 requires a new product category and many additional ccTalk commands.
Although the single device concept is compact and elegant, the ccTalk command
structure becomes inconsistent, ambiguous and hard to follow. It would destroy the
protocol.

Solution 2 is again elegant but there is now an overhead in the protocol as all
commands to hoppers, for example, have to be prefixed by a sub-address mask. This
will complicate host software drivers and increase the possibility of a ‘system hang’ if
the address switching goes out of sync. This is probably best avoided if we can.

Solution 3 is easy to comprehend as the combo device behaves as if it was individual
devices attached to the ccTalk bus. There are no changes or additions to the existing
ccTalk command structure and any driver software already written should still work.

So Solution 3 is the best option requiring a virtual address handler to be written in the
peripheral device. The overhead for this is very low and the software is easy to
implement.

Note there is a new ccTalk header 105, ‘Data stream’, which attempts to solve
some of these issues for memory transfer using a peripheral identifier byte in the
packet structure.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 26 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

4. ccTalk RFC (Request For Change)

The following changes are being investigated for future integration into the ccTalk
specification. Representations are invited from all interested parties.

New RFCs may be submitted by member companies to abarson@moneycontrols.com

4.1 Addition of lower-case letters to coin & note mint issue

Filing Code RFC/001

Filing Date 28/12/05

Compatibility Issues None expected but see comments

Current Status Rejected

The letter codes A-Z are used to differentiate between coins and notes of the same
currency and value.

See Appendix 3 – Coin Types and Coin Values.

See Appendix 15 – Bill Types and Bill Values

26 issue codes were originally thought to be plentiful to deal with new and old money
and a number of minting variations. The code is of no interest to many host machine
applications which deal principally with credit ‘value’ for the purposes of determining
a machine game or vend level. However, when inhibiting specific coins or bills in
circulation, or downloading new coin and bill currency sets, it becomes important to
identify the monetary unit precisely.

Some currencies such as British banknotes have reached letter Z already as there are
printings by Scottish and Northern Ireland banks included. A number of countries and
banks share the same ‘GB’ ISO code.

It is proposed to add 26 further codes using the lowercase letters a-z.

The order of assignment will be uppercase first then lowercase i.e. A, B, C… Z, a, b,
c… z.

The single character format is retained to maximise compatibility with existing
software. No change will be seen until the 26 uppercase options are exhausted.

Comments
Coin and bill names are often used in filenames and folder names. It may be the case
that a file system does not distinguish between upper case and lower case letters. So a
GB0020A.xxx file would be no different from GB0020a.xxx. At the ccTalk interface
level this does not cause a problem but it requires work-arounds for supporting
software. It would be preferable to add an extra issue character but for backwards
compatibility this cannot be done with headers 184 and 157.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 27 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

4.2 Addition of decimal point into the bill value field

Filing Code RFC/002

Filing Date 28/12/05

Compatibility Issues Minor problems could occur

Current Status Under Consideration

Bill validators have a global scaling factor and decimal point for each currency. When
a country has new and old notes in circulation with widely differing scaling it can be
difficult to derive a common scaling factor which works for all notes.

Rather than change to a system whereby each individual note has its own scaling
factor, it is proposed to allow decimal points to be used in the 4 character value field.
This gives a greater value range than is possible now.

New codes could typically be… (preferred value codes are highlighted in green)

Value Code Scaling Factor Decimal Places Result
.001 10,000 2 0.10
.002 10,000 2 0.20
.005 10,000 2 0.50
.010 10,000 2 1.00
.020 10,000 2 2.00
.025 10,000 2 2.50
.050 10,000 2 5.00
.100 10,000 2 10.00
.200 10,000 2 20.00
.250 10,000 2 25.00
.500 10,000 2 50.00

0.01 10,000 2 1.00
0.02 10,000 2 2.00
0.05 10,000 2 5.00
0.10 10,000 2 10.00
0.20 10,000 2 20.00
0.25 10,000 2 25.00
0.50 10,000 2 50.00
1.00 10,000 2 100.00
2.00 10,000 2 200.00
2.50 10,000 2 250.00
5.00 10,000 2 500.00

00.1 10,000 2 10.00
00.2 10,000 2 20.00
00.5 10,000 2 50.00
01.0 10,000 2 100.00
02.0 10,000 2 200.00
02.5 10,000 2 250.00
05.0 10,000 2 500.00
10.0 10,000 2 1,000.00
20.0 10,000 2 2,000.00
25.0 10,000 2 2,500.00
50.0 10,000 2 5,000.00

0001 10,000 2 100.00
0002 10,000 2 200.00

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 28 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

0005 10,000 2 500.00
0010 10,000 2 1,000.00
0020 10,000 2 2,000.00
0025 10,000 2 2,500.00
0050 10,000 2 5,000.00
0100 10,000 2 10,000.00
0200 10,000 2 20,000.00
0250 10,000 2 25,000.00
0500 10,000 2 50,000.00
1000 10,000 2 100,000.00
2000 10,000 2 200,000.00
2500 10,000 2 250,000.00
5000 10,000 2 500,000.00

The currency scaling factor of 10,000 could allow a note value of 500,000 giving a
ratio of highest value note to lowest value note of 500,000 / .1 = 5 million which is
considerably better than the current ratio of 5,000.

Comments
The only unknown is how existing machine software would react to a decimal point in
the value field when it is expecting a whole number. The impact of this may have to
be investigated on a case-by-case basis.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 29 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

4.3 Poll Watchdog Event and Baud Rate Switching

Filing Code RFC/003

Filing Date 23/10/06

Compatibility Issues 9600 baud is the default ?

Current Status Discussion Topic

Posted Jan Kaiser / Phoenix Mecano / Digital Elektronik GmbH

I have some ideas for improvement of the ccTalk standard. These are:

1. Coin Acceptor new Error Code 30 = Poll Watchdog was going active. That
means coin acceptance was inhibited due to missing #229. This event is set on each
occurrence, which can be the case only once after each #229. No coin is rejected. (
Each inserted coin while poll watchdog is active (alerted) will create an inhibited coin
event.)

Comments
The credit poll watchdog mechanism stops the coin acceptor accepting coins if the
host machine ‘dies’ and stops polling the acceptor. Although we could generate
events if this condition occurs and every time a coin is entered and inhibited, there
seems little point as there is a host-side fault. There is some flexibility on how this
feature is implemented by peripheral manufacturers; for instance, inhibited events
could be generated.

2. Communication speed change header
A new header for changing the communication speed would be useful.
Two data bytes should be transmitted from the master:
data1: 0 = ask availability
 1 = set speed 9600Baud (standard level)
 2 = set speed 19200 Baud
data2: wait time, proposed format = data2*10ms
Answer of device:
If asked, one byte with set bit for each supported speed level. Bit 0 is kept cleared.
If set on broadcast address, none and speed change.
If set on device address, ACK and than speed change after sent complete.
Intended use:
All communication starts at 9600Baud standard speed. The master asks all devices for
available speeds. If all devices on the bus support higher speeds the speed change
command is issued by the master.
This should be done as a broadcast command. If the speed change is set individually
the device ignores all communication for wait time, thus allowing other devices
switching the speed.
An automated fallback seems useful. If 30s after wait time no header arrived or 10s
after wait time 10 communication errors occurred (framing error indicating wrong
speed) the speed should be set back to the standard level by each device on the bus
automatically. The master can set the speed back too.
Could possibly used for fast block transfers (like update).
Limitations:
This is only useful if all devices support the header and higher speeds.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 30 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Comments
The ccTalk protocol is now being run at much faster speeds than the industry-standard
9600 baud. For instance, using ccTalk over USB we can easily achieve 1Mbps. We
could have implanted a baud rate switching command as above but it seems most
machines prefer to operate with a fixed baud rate and this is implemented in the
peripheral as a factory configuration option or perhaps on a DIP switch. Also, all
peripherals on the bus must operate at the same baud rate so if some support
automatic switching and others don’t there are going to be compatibility issues.

However, see new ccTalk header 113, ‘Switch baud rate’.

3. Coin acceptor: Note on Hardware, USB tunnelling
The ccTalk protocol is suited for tunnelling via USB. This is useful for direct PC-
connections, where the PC is the master. An USB bridge could be onboard of the coin
acceptor or in an adaptor.
There are the following differences to the common ccTalk cable connections:
· specified standard connectors and cable are not used, instead use of standard USB
cable, with connectors device-B or device-mini on the coin acceptor. (The coin
acceptor is usually not bus powered, an additional power cable is required but not
standardized. A DC power jack seems to be common.)
· no echo on USB cable (important for software on PC)

Comments
Agree that USB tunnelling is a very useful concept – see below. However, maximum
compatibility with existing drivers is achieved by retaining the local echo feature. In
other words, there is loop-back on the TX, even over USB.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 31 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

4.4 Baud Rate Switching

Filing Code RFC/004

Filing Date 12/11/07

Compatibility Issues Change to 9600 baud rate ?

Current Status Completed

Posted Alex Pogossov, Microsystem Controls Pty Ltd

When using ccTalk we sometimes increase baud rate, mainly to speed up
downloading and uploading configuration data, etc.

At the moment we are using a proprietary command for that. It works as follows:

The host sends one byte:
 1 for 9600 bps;
 2 for 19200 bps;
 3 for 38400 bps;
 4 for 57600 bps;
 5 for 115200 bps;
(other values have no effect.)

A device would ACK the command, if the byte is in the range 1..5 or NACK it
otherwise. The device would reply at the original speed and would switch to a new
speed shortly after the stop bit of ACK's checksum has been transmitted.

On power-up or after reset all devices start at 9600 bps. Also, as a safety measure, if a
new higher rate appears too unreliable, the host can force all the devices to the default
9600 bps by holding the ccTalk data line low for at least 50 ms.

If you find this approach useful for the future ccTalk protocol expansion, you might
like to make such approach "official" in the next revision and reserve a special header
for it.

If you are aware of some other way of baud rate control in ccTalk, which is likely
to become a defacto standard, please let us know, and we might adopt it as well.

See new ccTalk header 113, ‘Switch baud rate’.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 32 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

4.5 Product Spoofing

Filing Code RFC/005

Filing Date 07/05/08

Compatibility Issues The aim is backwards compatibility for new products

Current Status Discussion Topic

Posted Andy Barson, Money Controls

Some time after ccTalk was introduced it became apparent that many host machine
applications were wired up (well, the software equivalent) to recognise only a
specific type of ccTalk peripheral. This extended well beyond the equipment category
id into other fields. From a security and approvals point of view this was good
because it prevented illegal peripherals being used in the machine. However, it meant
that upgrading a product with a newer one or interchanging equivalent peripherals
from different manufacturers became impossible as there were sometimes strong
logistical reasons why machine firmware could not be upgraded as well.

Header Command

245 Request equipment category id
246 Request manufacturer id
244 Request product code
241 Request software revision
197 Request ROM checksum
192 Request build code
004 Request comms revision

Consider a new generation of coin acceptors from the same peripheral manufacturer.
The equipment category id would remain as ‘Coin Acceptor’ but the product code,
software revision, build code, ROM checksum and comms revision are all likely to
change. If the host machine does not verify any of these fields then no problems
would be expected. But if they are, and for it to work, the new product would have to
emulate, or ‘spoof’, the old product.

Although the old product could be spoofed quite easily, it would be a requirement for
the peripheral manufacturer that the actual, TRUE, identity of the peripheral could be
read. This is important for field support and traceability reasons. Therefore it is
recommended that product spoofing should be tolerated within the confines of the
ccTalk specification but that there needs to be some way of recovering the true
product identity. This could be through header 255, ‘Factory set-up and test’ since a
public command would not be needed for manufacturer-specific support equipment.
An internal software switch would allow the true identity of these fields to be
revealed.

Discussions are ongoing in this area.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 33 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

4.6 Cancelled Credit Events

Filing Code RFC/006

Filing Date 05/04/12

Compatibility Issues Would require updates to host machine software to

support

Current Status Rejected

Posted Alex Pogossov, Microsystem Controls Pty Ltd

Following discussions of cancelling credits through a new ‘credit type N cancelled’
event code…

We do not like the idea of the credits retrospectively cleared by the host either. We
also have had problems with manipulation. We also would not issue a credit if coin is
to slow, too fast, too early, too late (on a credit sensor), etc., in any case which might
suggest manipulation. We would give a respective error code instead, like Money
Control does.

However, in some cases, as I mentioned, coins can be swallowed if they are dirty or a
cashbox is full. As a result:

- customers may unjustly suffer
- discrepancies are found between the credited money and contents of cashboxes

Kiosk owners want to explain these issues better -- to resolve complaints and
also keep an eye on honesty of their own cash collectors.

So I suggest the following:

1. Scenario 1: Cashbox full.
Generate event ‘Credit sensor blocked’. No credit is given. Service call.

In addition give error code ‘Credit type N cancelled’. If a customer complains, his
complaint will be checked against the log. If he claims to have inserted exactly the
same coins for which credit cancellation codes are present and around the alleged
time, he will be refunded with apologies. If a discrepancy is found after coin counting,
this can also be explained.

2. Scenario 2: Coin trapped in gate.
Generate event ‘Credit sensor timeout’. No credit is given. Service call.

In addition give error code ‘Credit type N cancelled’. If a customer complains, his
complaint will be checked against the log. If he claims to have inserted exactly the
same coins for which credit cancellation codes are present and around the alleged
time, he will be refunded with apologies. If a discrepancy is found after coin counting,
this can also be explained.

In conclusion, I think that the addition of a ‘Credit type N cancelled’ group of
informative error codes, similar to the already existing ‘Inhibited coin (Type N)’,
does not contradict Money Controls methodology but only extends/expands upon it
and can only be useful, not detrimental, to a coin mech user.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 34 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

Issuing of such codes or not issuing them can be made configurable, so for backwards
compatibility with earlier ccTalk specs these codes can be simply switched off so as
not to confuse an ‘old’ host.

Currently, as per our customer request, as a trial, we are adding codes ‘Credit type N
cancelled’ 160 - 175 (we have 16 categories).

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 35 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

ccTalk over USB

4.7 Introduction

It is possible to run ccTalk over a USB link without changes to the protocol. To do
this we can change the physical link layer from ‘RS232 at +5V’ to USB and retain the
packet structure as defined in this specification. If you are familiar with the way USB
works then you will be aware that USB provides a set of communication pipes to
transfer data, each of which is optimised to a particular type of messaging
requirement. The software is written to support different ‘classes’ of USB device,
making use of common functionality where it exists e.g. audio devices, flash memory
storage, human input devices etc. Unlike RS232 and UART technology, the
complexity of USB requires a PC driver to be loaded during the enumeration of a hot-
plugged device. This driver provides the API to talk to the device from the application
layer. The use of ccTalk over USB is simplified by having the peripheral enumerate
as a COM class device (sometimes called CDC, Communication Device Class). This
class emulates a conventional UART link by loading up a virtual COM port into the
operating system.

In the example above, a COM3 virtual serial port has been created. Note that the PC
does not physically have a serial port 3, but one has been emulated by loading the
appropriate USB driver (in this case a CP210x bridge controller).

Once the driver is loaded, it should be possible to set the baud rate, no. of stop bits,
odd or even parity etc. just like a normal UART built into the motherboard.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 36 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

4.8 Advantages

• If your PC or host controller card does not have a UART (as is the case for the newer
Intel chip sets) then you have no choice but to run ccTalk through a USB port.

• The 9600 baud rate of ccTalk can be massively increased as full speed USB runs at
12MHz and high speed at 480MHz. It should be possible to achieve a baud rate of at
least 1Mbps with low cost devices and no special screening or PCB layout.

4.9 Disadvantages

• USB uses a hub topology. You cannot plug a USB device directly into the USB bus,
it must connect to a hub which are themselves connected to the bus. Hubs can be
connected to other hubs to increase the number of simultaneous connections. USB
provides the addressing mechanism for the host to talk to any peripheral device, and
also some data integrity though CRC checksums. Therefore the addressing and
checksum fields of ccTalk are redundant when operating over a USB cable. Given the
speed increase over USB, a few wasted bytes is not an issue. But if the peripheral side
of the link consists of a number of ‘virtual’ ccTalk devices then the addressing
information would still be required.

• A COM class USB device may not be as efficient at transferring large quantities of
data as a custom class written specifically for a printer or bill validator for example.

4.10 Hardware Solutions

A number of chip manufacturers now supply UART to USB bridge chips which can
be embedded into ccTalk devices to make them operate as USB peripherals. On the
host side they supply drivers for a range of popular operating systems.

4.11 Example Devices

FTDI FT232RQ USB UART
http://www.ftdichip.com

SiLabs CP2102 USB to UART Bridge
http://www.silabs.com

4.12 System Integration

USB
Bridge
Chip

TX

RX

D-

D+
USB Type B Embedded

Processor

UART
Port

ccTalk expects to see local
loop-back as if there was a
combined TX / RX line

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 37 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

When the USB lead is plugged into the host PC, the application software in the PC
will configure the baud rate in the USB Bridge Chip using the VCOM driver so that
the embedded processor can operate as if the USB link was not present.

In this way ccTalk over USB exploits the speed and reliability advantages of USB
without any change to the embedded firmware. The protocol is unchanged and any
application software is unchanged (perhaps just a change to a different COM port
number).

4.13 Broadcast Address and MDCES commands

Since a USB solution connects a single peripheral to a single USB driver, the use of
the broadcast address and multi-drop address polling is redundant. The address
mechanism is still required for a logical connection but does not act to separate
devices on the bus. If in the unlikely event you do not know the ccTalk address of the
peripheral then an address poll can be used to return it without the possibility of a
clash occurring (only 1 ccTalk peripheral per USB bus).

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 38 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

5. Security Vulnerabilities

5.1 The Null Byte Injection Problem

If somebody gains access to the ccTalk data line and manages to short out the signal
to GND for a short time, it will have the effect of injecting a null byte onto the bus i.e.
a zero start bit followed by 8 zero data bits. The stop bit will be in the wrong state but
not all UARTs are configured to generate a framing error when this occurs.

A null byte sent just prior to a command from the host will force a zero destination
address onto the packet.

For example, consider a ‘Modify master inhibit status’ command sent to a coin
acceptor.

TX Packet = 002 001 001 228 001 023

Inserting a null byte gives…

TX Packet = 000 002 001 001 228 001 023

So
Destination Address = 0 (the broadcast address, all peripherals respond)
No. of Data Bytes = 2
Source Address = 1
Header = 1 (Reset device)
Data = 228, 1
Checksum = 23 (0 + 2 + 1 + 1 + 228 + 1 + 23 = 256)

The normal reset command is…
TX Packet = 002 000 001 001 252

Adding a zero byte does not interfere with the 8-bit addition checksum so that stays
valid.

The effect may be to reset all peripherals attached to the bus, which may or may not
lead to a subsequent exploit.

Since the source address becomes the header, most attacks of this sort result in a
‘Reset device’ command since the source address is almost always 1.

There are a number of easy ways to prevent this injection problem on the peripheral.

• Ensure the ‘Reset device’ command takes zero data bytes.
• Trap framing errors if possible and flush any receive data.
• Use CRC checksums if possible because they are more secure.

USB peripherals are not subject to the same kind of ground-shorting attack.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 39 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

6. Obsolete Commands

The following commands were removed from issue 4.6 of the generic ccTalk
specification as they were designed for specific products with limited scope and did
not gain any traction in the industry. They have been given the obsolete designation
for at least 5 years. The header numbers will be re-used as newer products are
developed.

6.1 Header 235 - Read last credit or error code

<<< Obsolete command >>>

Refer to ‘Read buffered credit or error codes’ for coin acceptors.
Refer to ‘Read buffered bill events’ for bill validators.

Format (a)
Transmitted data : <none>
Received data : [coin position]

Format (b)
Transmitted data : <none>
Received data : [0] [error code]

Format (c)
Transmitted data : <none>
Received data : [coin position] [sorter path]

6.2 Header 234 - Issue guard code

<<< Obsolete command >>>

Transmitted data : <none>
Received data : ACK

From earlier specifications…
Some commands may be protected by a guard code to improve the reliability in noisy
environments. For example, using a command which latches output signals may result
in electrical component damage in certain situations. Relying on a single 8-bit
checksum to ensure data integrity may not be wise in extremely noisy environments.
Therefore, the latch command can be disabled unless it occurs within 50ms (for
example) of the guard code command being issued. The slave device will therefore
only respond if 2 different commands are received correctly and close together -
massively reducing the chances of a random fail.

The reliability of ccTalk in a wide range of actual operating environments is now
respected by many manufacturers. There is no need for the guard code command.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 40 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

6.3 Header 224 - Dispense coins

<<< Obsolete command >>>

This command has been superseded by the ultra-secure ‘Dispense hopper coins’
command. This obsolete command allows 65,535 coins to be paid out in one go.

Transmitted data : [hopper no.] [no. of coins LSB] [no. of coins MSB]
Received data : ACK or [status code]

[hopper no.]
1, 2, 3 etc.

[status code]
252 - error
253 - not available (incorrect hopper no.)
254 - insufficient coins
255 - busy

This command dispenses a number of coins from the specified change hopper.

A status code is only returned if there is a problem. The usual response is an ACK.
Depending on the payout speed, this command may take several minutes to complete.
Since the ACK message is returned immediately from the slave device, the ‘Request
payout status’ command should be used to monitor progress.

6.4 Header 223 - Dispense change

<<< Obsolete command >>>

Transmitted data : [coin value LSB] [coin value MSB]
Received data : ACK or [status code]

[coin value]
The actual coin value is a multiple of the ‘coin value scaling factor’ which may
typically be 1, 5 or 10.

[status code]
See ‘Dispense coins’ for possible status codes.

This command is used to dispense change (coins to a given value) from a changer. It
is up to the changer to determine the type and quantity of all coins dispensed. The
usual changer algorithm is to dispense the maximum number of highest value coins
first, followed by the next highest value etc.

A status code is only returned if there is a problem. The usual response is an ACK.
Depending on the payout speed, this command may take several minutes to complete.
Since the ACK message is returned immediately from the slave device, the ‘Request
payout status’ command should be used to monitor payout progress.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 41 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

6.5 Header 220 - One-shot credit

<<< Obsolete command >>>

Format (a)
Transmitted data : [coin position]

Format (b)
Transmitted data : [coin position] [sorter path]

Format (c)
Transmitted data : [0] [error code]

This is a special case where the slave device fires off a credit or error code without
being polled by the host. This method is unsuitable for all multi-drop applications
(because of collision risk) and does not support a mechanism for re-transmission in
the event of a receive error. There is no reply from the host.

6.6 Header 206 - Empty payout

<<< Obsolete command >>>

Format (a)
Transmitted data : <none>
Received data : ACK or [status code]

Format (b)
Transmitted data : [hopper no.]
Received data : ACK or [status code]

[status code]
See ‘Dispense coins’ for possible status codes.

This command is used to completely empty a coin hopper. The usual response is an
ACK - a status code is only returned if there is a problem.

Depending on the payout speed, this command may take several minutes to complete.
Since the ACK message is returned immediately from the slave device, the ‘Request
payout status’ command should be used to monitor payout progress.

This command provides an easy way to ‘jackpot’ a hopper and is best left
unimplemented or at the very least PIN number protected.

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 42 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

6.7 Header 205 - Request audit information block

<<< Obsolete command >>>

This command has been tailored to a specific Money Controls product - a changer
with 3 hoppers.

Transmitted data : <none>
Received data : [coins in hopper 1A] [coins in hopper 1B]
 [coins in hopper 2A] [coins in hopper 2B]
 [coins in hopper 3A] [coins in hopper 3B]
 [coins to cashbox A] [coin to cashbox B] [coins to cashbox C]
 [coins accepted A] [coins accepted B] [coins accepted C]
 [coins rejected A] [coins rejected B] [coins rejected C]
 [coins paid hop. 1A] [coins paid hop. 1B] [coins paid hop. 1C]
 [coins paid hop. 2A] [coins paid hop. 2B] [coins paid hop. 2C]
 [coins paid hop. 3A] [coins paid hop. 3B] [coins paid hop. 3C]
 [value to cashbox A] [value to cashbox B]
 [value to cashbox C] [value to cashbox D]
 [coin value scaling factor]

Counter designator A denotes the LSB.

The cashbox value is sent in multiples of the ‘coin value scaling factor’.

6.8 Header 200 - Upload coin data

<<< Obsolete command >>>

Transmitted data : [coin position 1] [coin position 2]
 [credit code 1] [credit code 2]
 [sorter path 2 | sorter path 1]
 [sorter path 4 | sorter path 3]
 [op code]
 [upload 1] [upload 2] [upload 3] [upload 4]…
Received data : ACK or [reply code]

This command is specific to the remote programming of coins.

[op code]
Bit 0 - credit code control
 0 = no action
 1 = program
Bit 1 - sorter path control
 0 = no action
 1 = program
Bit 2 - <undefined>
Bit 3 - <undefined>
Bits 4 to 7 - window programming control
 0 = calibrate window

Public Domain Document

 ccTalk Generic Specification - Crane Payment Solutions - Page 43 of 43 - ccTalk Part 4 v4.7.doc
While every effort has been made to ensure the accuracy of this document no liability of any kind is

accepted or implied for any errors or omissions that are contained herein.

 1 = delete window
 2 to 15 = <undefined>

[reply code]
<<< Refer to Table 5 >>>

This command allows remote re-programming of coin acceptors by transferring a
block of calibration data. The credit code and sorter path may be changed as well.

There is support for dual window programming (useful for repeated banks of coins)
and also window deletion.

The upload block itself cannot be larger than 245 bytes for each coin.

6.9 Header 190 - Request payout status

<<< Obsolete command >>>

Format (a)
Transmitted data : <none>
Received data : [events]
 [no. of coins paid out LSB] [no. of coins paid out MSB]
 [status code]

Format (b)
Transmitted data : <none>
Received data : [events]
 [coin value paid out LSB] [coin value paid out MSB]
 [status code]

This command is used to monitor the progress of a payout sequence.

[events]
0 (reset or power-up condition)
1 to 255 - event counter

The event counter is incremented on receipt of a valid hopper payout command and
wraps around from 255 to 1. This is a security mechanism to prevent unnecessary
retries if a comms error occurs.

[status code]
250 - error, payout blocked (coin over exit sensors)
251 - error, payout timeout (no coins detected)
252 - error, payout jammed (over-current trip)
253 - payout incomplete (insufficient change / incorrect hopper no.)
254 - paying out (busy)
255 - payout completed

